270 research outputs found

    Locally Optimal Load Balancing

    Full text link
    This work studies distributed algorithms for locally optimal load-balancing: We are given a graph of maximum degree Δ\Delta, and each node has up to LL units of load. The task is to distribute the load more evenly so that the loads of adjacent nodes differ by at most 11. If the graph is a path (Δ=2\Delta = 2), it is easy to solve the fractional version of the problem in O(L)O(L) communication rounds, independently of the number of nodes. We show that this is tight, and we show that it is possible to solve also the discrete version of the problem in O(L)O(L) rounds in paths. For the general case (Δ>2\Delta > 2), we show that fractional load balancing can be solved in poly⁡(L,Δ)\operatorname{poly}(L,\Delta) rounds and discrete load balancing in f(L,Δ)f(L,\Delta) rounds for some function ff, independently of the number of nodes.Comment: 19 pages, 11 figure

    Few-Body States in Fermi-Systems and Condensation Phenomena

    Full text link
    Residual interactions in many particle systems lead to strong correlations. A multitude of spectacular phenomenae in many particle systems are connected to correlation effects in such systems, e.g. pairing, superconductivity, superfluidity, Bose-Einstein condensation etc. Here we focus on few-body bound states in a many-body surrounding.Comment: 10 pages, proceedings 1st Asian-Pacific Few-Body Conference, needs fbssuppl.sty of Few-Body System

    Superconducting properties of the attractive Hubbard model

    Full text link
    A self-consistent set of equations for the one-electron self-energy in the ladder approximation is derived for the attractive Hubbard model in the superconducting state. The equations provide an extension of a T-matrix formalism recently used to study the effect of electron correlations on normal-state properties. An approximation to the set of equations is solved numerically in the intermediate coupling regime, and the one-particle spectral functions are found to have four peaks. This feature is traced back to a peak in the self-energy, which is related to the formation of real-space bound states. For comparison we extend the moment approach to the superconducting state and discuss the crossover from the weak (BCS) to the intermediate coupling regime from the perspective of single-particle spectral densities.Comment: RevTeX format, 8 figures. Accepted for publication in Z.Phys.

    Momentum relaxation from the fluid/gravity correspondence

    Get PDF
    We provide a hydrodynamical description of a holographic theory with broken translation invariance. We use the fluid/gravity correspondence to systematically obtain both the constitutive relations for the currents and the Ward identity for momentum relaxation in a derivative expansion. Beyond leading order in the strength of momentum relaxation, our results differ from a model previously proposed by Hartnoll et al. As an application of these techniques we consider charge and heat transport in the boundary theory. We derive the low frequency thermoelectric transport coefficients of the holographic theory from the linearised hydrodynamics.Comment: 19 pages + appendix, v2: references added, typos corrected, v3: version published in JHE

    Correlations and Equilibration in Relativistic Quantum Systems

    Full text link
    In this article we study the time evolution of an interacting field theoretical system, i.e. \phi^4-field theory in 2+1 space-time dimensions, on the basis of the Kadanoff-Baym equations for a spatially homogeneous system including the self-consistent tadpole and sunset self-energies. We find that equilibration is achieved only by inclusion of the sunset self-energy. Simultaneously, the time evolution of the scalar particle spectral function is studied for various initial states. We also compare associated solutions of the corresponding Boltzmann equation to the full Kadanoff-Baym theory. This comparison shows that a consistent inclusion of the spectral function has a significant impact on the equilibration rates only if the width of the spectral function becomes larger than 1/3 of the particle mass. Furthermore, based on these findings, the conventional transport of particles in the on-shell quasiparticle limit is extended to particles of finite life time by means of a dynamical spectral function A(X,\vec{p},M^2). The off-shell propagation is implemented in the Hadron-String-Dynamics (HSD) transport code and applied to the dynamics of nucleus-nucleus collisions.Comment: 20 pages, 7 figures to appear in "Nonequilibrium at short time scales - Formation of correlations", edited by K. Morawetz, Springer, Berlin (2003), p16

    Quantizing higher-spin gravity in free-field variables

    Get PDF
    We study the formulation of massless higher-spin gravity on AdS3_3 in a gauge in which the fundamental variables satisfy free field Poisson brackets. This gauge choice leaves a small portion of the gauge freedom unfixed, which should be further quotiented out. We show that doing so leads to a bulk version of the Coulomb gas formalism for WNW_N CFT's: the generators of the residual gauge symmetries are the classical limits of screening charges, while the gauge-invariant observables are classical WNW_N charges. Quantization in these variables can be carried out using standard techniques and makes manifest a remnant of the triality symmetry of W∞[λ]W_\infty[\lambda]. This symmetry can be used to argue that the theory should be supplemented with additional matter content which is precisely that of the Prokushkin-Vasiliev theory. As a further application, we use our formulation to quantize a class of conical surplus solutions and confirm the conjecture that these are dual to specific degenerate WNW_N primaries, to all orders in the large central charge expansion.Comment: 31 pages + appendices. V2: typos corrected, reference adde

    Conjectures on exact solution of three - dimensional (3D) simple orthorhombic Ising lattices

    Full text link
    We report the conjectures on the three-dimensional (3D) Ising model on simple orthorhombic lattices, together with the details of calculations for a putative exact solution. Two conjectures, an additional rotation in the fourth curled-up dimension and the weight factors on the eigenvectors, are proposed to serve as a boundary condition to deal with the topologic problem of the 3D Ising model. The partition function of the 3D simple orthorhombic Ising model is evaluated by spinor analysis, by employing these conjectures. Based on the validity of the conjectures, the critical temperature of the simple orthorhombic Ising lattices could be determined by the relation of KK* = KK' + KK'' + K'K'' or sinh 2K sinh 2(K' + K'' + K'K''/K) = 1. For a simple cubic Ising lattice, the critical point is putatively determined to locate exactly at the golden ratio xc = exp(-2Kc) = (sq(5) - 1)/2, as derived from K* = 3K or sinh 2K sinh 6K = 1. If the conjectures would be true, the specific heat of the simple orthorhombic Ising system would show a logarithmic singularity at the critical point of the phase transition. The spontaneous magnetization and the spin correlation functions of the simple orthorhombic Ising ferromagnet are derived explicitly. The putative critical exponents derived explicitly for the simple orthorhombic Ising lattices are alpha = 0, beta = 3/8, gamma = 5/4, delta = 13/3, eta = 1/8 and nu = 2/3, showing the universality behavior and satisfying the scaling laws. The cooperative phenomena near the critical point are studied and the results obtained based on the conjectures are compared with those of the approximation methods and the experimental findings. The 3D to 2D crossover phenomenon differs with the 2D to 1D crossover phenomenon and there is a gradual crossover of the exponents from the 3D values to the 2D ones.Comment: 176 pages, 4 figure

    Spectral renormalization group theory on networks

    Full text link
    Discrete amorphous materials are best described in terms of arbitrary networks which can be embedded in three dimensional space. Investigating the thermodynamic equilibrium as well as non-equilibrium behavior of such materials around second order phase transitions call for special techniques. We set up a renormalization group scheme by expanding an arbitrary scalar field living on the nodes of an arbitrary network, in terms of the eigenvectors of the normalized graph Laplacian. The renormalization transformation involves, as usual, the integration over the more "rapidly varying" components of the field, corresponding to eigenvectors with larger eigenvalues, and then rescaling. The critical exponents depend on the particular graph through the spectral density of the eigenvalues.Comment: 17 pages, 3 figures, presented at the Continuum Models and Discrete Systems (CMDS-12), 21-25 Feb 2011, Saha Institute of Nuclear Physics, Kolkata, Indi

    Hysteresis phenomenon in turbulent convection

    Full text link
    Coherent large-scale circulations of turbulent thermal convection in air have been studied experimentally in a rectangular box heated from below and cooled from above using Particle Image Velocimetry. The hysteresis phenomenon in turbulent convection was found by varying the temperature difference between the bottom and the top walls of the chamber (the Rayleigh number was changed within the range of 107−10810^7 - 10^8). The hysteresis loop comprises the one-cell and two-cells flow patterns while the aspect ratio is kept constant (A=2−2.23A=2 - 2.23). We found that the change of the sign of the degree of the anisotropy of turbulence was accompanied by the change of the flow pattern. The developed theory of coherent structures in turbulent convection (Elperin et al. 2002; 2005) is in agreement with the experimental observations. The observed coherent structures are superimposed on a small-scale turbulent convection. The redistribution of the turbulent heat flux plays a crucial role in the formation of coherent large-scale circulations in turbulent convection.Comment: 10 pages, 9 figures, REVTEX4, Experiments in Fluids, 2006, in pres
    • 

    corecore